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ABSTRACT  

Turbulent convectional flow of water in horizontal 

layer with free and rigid horizontal boundaries, 

arising by heating from below, is numerically 

simulated by spectral method using the Boussinesq 

model without any semiempirical relationships 

(DNS) in 2-D case. The results of the both numerical 

simulations compare with experimental data. We 

studied the time and space spectrums of temperature 

pulsations and kinetic energy in both free and rigid 

simulations. The Kolmogorov (k
-5/3

), Obukhov-

Bolgiano (k
-7/5

 for temperature pulsations and  

k
-11/5

 for kinetic energy of pulsations) spectrums 

have been derived in numerical simulations. These 

spectrums were observed earlier in experimental 

investigations of turbulent convection of gaseous He. 

It is surprising that ranges of k
-5/3

 and k
-7/5

 spectrums 

are partially coincident. 
 

 

INTRODUCTION  
 

At last time many workers have studied thermal 

Rayleigh-Benard convection using numerical 

simulation. As rule, they used spectral methods with 

periodic boundary conditions. In numerical 

simulations were derived stationary, periodic, 

quasiperiodic and stochastic regimes [1]. Some 

authors performed 2-D and 3-D simulations for high 

supercriticality with free [2,3] and rigid [4,5] 

boundary conditions on the horizontal planes. The 

results of correct performed 3-D numerical 

simulations with rigid boundary conditions in air, as 

rule, have good agreement with experimental data 

([6] and [7], for instance). But we have a big troubles 

with deriving of time-dependent solutions for 2-D 

convection in air and gaseous He, up to large 

Rayleigh number all solutions are steady state [4].  

On the other hand, it is revealed recently that the 

time-dependent solutions of 2-D convection with 

free boundary conditions (stress free) at Prandtl 

number is equal to 10 have a good agreement with 

experimental data on turbulent convection in air and 

gaseous He [8]. It is very significant and practical, 

as using of free boundary conditions very simplifies 

the DNS of turbulent convection, simple and 

efficient numerical algorithms have been generated 

using the formulas of linear stability theory [9,10].  

For instance, in table 1 we compare the calculating 

Nusselt numbers. Here and below  

r = Ra/Racr is supercriticality, when Ra and Racr are 

Rayleigh number and the critical value of Rayleigh 

number, respectively. 

 

Table 1 

Comparing of Nusselt Number at r = 33000 

 

[4], 2-D, rigid, water 

[11], experiment, gaseous He 

[12], experiment, air 

[2], 3-D, free, air 

Present, 2-D, free, water 

24.8 

25.2 

27.5 

33.0 

28.7 

 

The same situation you can see in [8] for  

r = 9800.It shows that for simulations with free 

boundary conditions the value of Prandtl number 

must be higher because of decreasing of effective 

Prandtl number by free boundary conditions. 

The aim of this work is more detailed comparing of 

results of 2-D simulations with free and rigid 

boundary conditions on horizontal planes with 

experimental data on turbulent convection. 
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PROBLEM FORMULATION  
 

Turbulent convectional flow of water in a horizontal 

layer numerically is simulated by heating from 

below. The fluid is viscous and incompressible. The 

flow is time-dependent and two-dimensional. 

Boundaries of a layer are isothermal and free (stress-

free) or rigid. The model Boussinesq is used without 

semiempirical relationships. The dimensionless 

system of equations in terms of deviations from an 

equilibrium solution, representation of problem 

solution in the form of sum of eigenfunctions of 

linear stability theory, the boundary conditions, the 

special numerical method, testing and the results of 

linear and non linear analysis (on model non linear 

system) for free boundary conditions are described in 

works [9, 10]. In our simulations with free boundary 

conditions we used up to 257*63 harmonics at 

supercriticality up to r = 34000. In the test 

simulations we used up to 513*127 of harmonics 

with free boundary conditions. 

For simulations with rigid boundary conditions we 

used the spectral representation in x-direction and 

finite differences in y-direction with uniform mesh. 

We used up to 257 harmonics in x-direction and 65 

points in y-direction at supercriticality up to 7000. In 

the test simulations we used up to 513*65 (or 

257*129) of harmonics with rigid boundary 

conditions. 

We simulated the convection flows for the Prandtl 

number Pr is equal to 10, for all simulations the 

dimensionless periodicity interval is equal to 2π, the 

dimensionless distance between the planes is equal  

to 1. 

So, we are solving the system of equations 

 

1
( ) Q ,

Pr

, (1)

1 1 1
Q ( Q Q ) Q ,

Pr Pr Pr

t y x x y x

t y x x y x

Raω ϕ ω ϕ ω ω

ϕ ω

ϕ ϕ ϕ

+ − = ∆ +

∆ = −

+ − = ∆ −

 

 

where φ is a stream function, ω is the vortex, Q is the 

temperature deviation from equilibrium profile (the 

total temperature being  T = 1 - y + Q), ∆f = fxx +fyy 
is the Laplace operator, Ra = gβН

3
dQ/χν is the 

Rayleigh number, Pr = ν/χ is the Prandtl number, g is 

the gravitational acceleration, β, ν, χ are the 

coefficients of thermal expansion, kinematics 

viscosity and thermal conductivity, respectively, H is 

the layer height and dQ is the temperature difference 

on the horizontal boundaries. 

 

 

RESULTS AND DISCUSSION 
 

Fig.1 represents the average temperature profile. At 

figs. 1 - 4 below y denotes transverse coordinate. At 

fig.1 symbol ● denotes experimental results [7]  

(r = 5900, air), dash line – experimental results [13]  

(r = 5500, water), solid line - results of present work 

with free boundary conditions (r = 6000, Pr = 10).  

 

 
Figure 1 

Average temperature profile at r = 6000 
 

Fig.2 represents the rms of vertical velocity 

pulsations. Here symbol ● denotes the experimental 

results [7] (r = 5900, air), symbol ■■ – experimental 

result [12] (r = 5900, air), solid line - results of 

present work with free boundary conditions  

(r = 5500, Pr = 10). 

 

 
Figure 2 

Rms of vertical velocity pulsations at r = 6000 

 

Fig.3 represents the rms of temperature pulsations at 

moderate supercriticality r = 1250. Here symbol ● 

denotes the experimental results [7]  

(r = 1470, air), symbol  – experimental result [12]  
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(r = 1400, air), symbol ◊ - experimental result of 

Somerscales, 1965 (r = 1170, data is from work [7]), 

symbol ○ – experimental result [14] (r = 1250, 

gaseous He), solid line - results of present work with 

free boundary conditions (r = 1250, Pr = 10). The 

experimental data has a big scatter and derived 

numerical results have a reasonably good agreement 

with experimental data, some waviness is coupled 

possibly with Gibbs effect for spectral 

representations.  

 

 
 

Figure 3 

Rms of temperature pulsations at r = 1250 

 

Figs.1-3, table 1 and [8] demonstrate that results of 

numerical 2-D simulation with free boundary 

conditions on the horizontal planes are consistent 

with experimental data in air and gaseous He. 

Fig.4 represents the profile of rms temperature 

pulsations at r = 6000, here black solid line is result 

of present simulation (rigid), red and blue solid lines 

are theoretical laws [15]. 

 

 
 

Figure 4 

Rms of temperature pulsations at r = 6000 

 

Fig.5 represents the profile of rms vertical velocity 

pulsations at r = 6000, here black solid line is result 

of present simulation (rigid), symbols ● and ● - 

experimental result [16] at r = 7300 and r = 18900, 

respectively (water, Pr = 6.1, aspect ratio is equal to 

4.5 and Racr ≈ 1820 [17], result is recalculated using  

v' ~ r
0.44

·Pr
0.333

 for scale [16]), magenta line is 

theoretical law [15]. 

 

 
 

Figure 5 

Rms of vertical velocity pulsations at r = 6000 

 

Fig.6 represents the values of rms vertical velocity 

pulsations in centre between the planes divided by 

Pr
1/3

, here green solid line – experimental result of 

[16] (water, Pr = 6.1), symbol ● - present numerical 

simulations (rigid, Pr = 10), symbol ● – 

experimental result of [7] (air, Pr = 0.71) and 

symbol ● – experimental result of [18] (water,  

Pr = 6.1). 

 

 
 

Figure 6 

Rms of vertical velocity pulsations in centre 

 

Table 2 

Comparing of Nusselt Number at r = 4000 

Work Nu Deviation  

in  % 

Present, rigid 16.9 0 

O’Toole&Silveston, 1961 [20] 15.3 -9.5 
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In table 2 we compare the calculating Nusselt number 

and experimental data on turbulent convection in 

water. The agreement is good, but our numerical 

result is slightly higher.  

Figs.4-6 and table 2 demonstrate that results of 

numerical 2-D simulation with rigid boundary 

conditions on the horizontal planes are consistent 

with experimental data in water and theoretical laws. 

For free boundary conditions on horizontal plates, the 

values of Nusselt number at r > 700 describe by 

formula: 

                        
0.3021.223 ,Nu r= ⋅  

 

This law practically coincides with experimental 

laws from [19] (Nu = 1.222·r
0.3

) and O’Toole and 

Silveston, 1961 [20] (Nu = 1.222·r
0.305

) and close to 

experimental law [12] (Nu = 1.211·r
0.3

). The same 

power law has been derived also in numerical 

simulation [3] (Nu ~ r
0.301

, infinite Prandtl number 

model, 2-D, free). 

For rigid boundary conditions on horizontal plates, 

the values of Nusselt number at r > 300 describe by 

formula: 

                        
0.3061.323 .Nu r= ⋅  

 

In recent experimental work [21] was found that  

Nu ~ Ra
0.309

, in some experimental and numerical 

works the other laws were found – close to Nu ~ r
2/7 

[5,11,13,14,16] and close to Nu ~ r
1/3 

[22]. The 

detail review of experimental Nu-Ra laws may be 

found in work [22] (see also [20]). 

 

 

TIME AND SPACE SPECTRUMS 
 

Fig.7 represents the time spectrum of temperature 

pulsations in center of cell, here solid line is result of 

present simulation (free, r = 6500), blue points are 

experimental data [23] (gaseous He, Ra = 1.1·10
8
,  

r ≈ 6400, Racr ≈ 17000 at aspect ratio is equal to 0.5 

[17]). Normalizations are same. Frequency f is in unit 

of ν/H
2
.  

The green line represents the experimentally defined 

boundary of two regimes: 

 

                 0.5f 0.05 / Pr,o Ra= ⋅  

 

above the frequency f0 a power law has slope  

–1.4 (Obukhov-Bolgiano spectrum), and below f0 

the spectrum is flat. 

 
Figure 7 

Time spectrum of temperature pulsations (free) 

 

Figs.8 and 9 represent the one-dimensional space 

spectrums of temperature pulsations: 

 

1

0

2

0

2
km

2
km

km

1
( ) { Q(t) } ,

1
( ) { Q(t) } ,

Q(t,x,y) = Q(t) sin( )sin( ).

T

T

m

k

E k dt
T

E m dt
T

kx myα π

=

=

∑∫

∑∫

∑

 

 

Here black points are result of present simulation 

(free, r = 26000). 

  

 
Figure 8 

E1(k) space spectrum of temperature (free) 

 

Figure 9 

E2(m) space spectrum of temperature (free) 



International Conference on Hydrodynamic Instability and Turbulence 

   

 

We can see the Kolmogorov (k
-5/3

), Obukhov-

Bolgiano (k
-7/5

) and k
-2.4

 spectrums earlier observed 

in experimental investigations of turbulent 

convection of gaseous He [21,23]. Fig.9 shows the 

slightly distorted spectrums of Kolmogorov  and 

Obukhov-Bolgiano. Part k
-1

 is range of enstrophy 

transfer inherent to 2-D turbulent flows. It is 

surprising that ranges of k
-5/3

 and k
-7/5

 spectrums are 

partially coincident. 

Fig.10 represents the one-dimensional space 

spectrum of temperature pulsations E2(m) for 

problem with rigid boundary conditions, here points 

are result of present simulation (r = 6000). 
 

 
Figure 10 

E2(m) space spectrum of temperature (rigid) 
 

We can see also the Kolmogorov (k
-5/3

), Obukhov-

Bolgiano (k
-7/5

) spectrums.  

We calculated also the one-dimensional spectrum of 

kinetic energy EK2(m) by analogous formula. Fig. 11 

shows the one-dimensional spectrums of kinetic 

energy EK2(m) for rigid (r = 6000) boundary 

conditions. 

 

 
Figure 11 

EK2(m) space spectrum of kinetic energy (rigid) 
 

We can see the Obukhov-Bolgiano spectrum k
–2.2

 

for kinetic energy.  
 

CONCLUSION  

 

We compare the results of our 2-D simulations with 

free and rigid boundary conditions on the horizontal 

planes and experimental data on turbulent 

convection. Prandtl number is equal to 10 in a both 

simulations. 

It is revealed that results of simulations with free 

boundary conditions have a good agreement with 

experimental data on turbulent convection in air and 

gaseous He. The profiles of mean temperature, rms 

of temperature and vertical velocity pulsations are 

close at enough high supercriticality. We observe 

also a good agreement with experimental data in 

time spectrum of temperature pulsations in centre of 

cell. The Nusselt numbers are close too. 

The results of simulations with rigid boundary 

conditions have a reasonable agreement with 

experimental data on turbulent convection in water. 

The profiles of rms of temperature and vertical 

velocity pulsations are close to experimental data 

and theoretical laws. The Nusselt numbers at rigid 

boundary conditions are slightly higher, but 

exponent of the Nu-Ra power law is same for free 

and rigid simulations.  

We studied the time and space spectrums of 

temperature pulsations and kinetic energy in both 

free and rigid simulations. The Kolmogorov (k
-5/3

), 

Obukhov-Bolgiano (k
-7/5

 for temperature 

pulsations and k
-11/5

 for kinetic energy of 

pulsations) and k
-2.4

 spectrums have been derived 

in our simulations. These spectrums were observed 

earlier in experimental investigations of turbulent 

convection of gaseous He. It is surprising that 

ranges of k
-5/3

 and k
-7/5

 spectrums are partially 

coincident. 
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