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ABSTRACT 
We study the spectral characteristics of the numerical 

method for DNS of turbulent convectional flows. 

These spectral characteristics compare with spectral 

characteristics of differential problem. On model 

nonlinear system equations also the nonlinear 

analysis of the numerical method has been 

performed. The results of calculation of turbulent 

convection with free boundary conditions are given 

at number Rayleigh up to 34000 times the critical 

value; these results show the transition from soft 

turbulence to hard. The derived numerical results are 

comparing with experimental data and numerical 

results of other authors. 
 

 

INTRODUCTION  
 

Many researchers studied thermal Rayleigh-Benard 

convection using numerical simulation. As rule, they 

used spectral methods with periodic boundary 

conditions. In numerical simulations stationary, 

periodic, quasiperiodic and stochastic regimes have 

been derived [1]. Some authors performed 2-D and  

3-D simulations for high supercriticality with free 

[2,3] and rigid [4,5] boundary conditions on the 

horizontal planes. Unfortunately, in these works the 

spectral analysis of using numerical methods in linear 

and nonlinear approach is absent. 

In recent time it is shown that results of 2-D 

numerical simulations of turbulent convection with 

free boundary conditions on the horizontal planes at 

Prandtl number (Pr) is equal to 10 have a good 

agreement with experimental results on turbulent 

convection in gaseous He and air and results of 

numerical simulations with rigid boundary conditions 

at enough high supercriticality [6].  

So far the full numerical simulation of 3-D turbulent 

convection is very complex problem demanding the 

large resources. The reasons are: 1. The existence 

simultaneously of rapidly increasing and rapidly 

decreasing harmonics in linear approach (at  

r = Ra/Racr = 1000 and Pr = 1 one of harmonics is 

increasing as e
682·t

). 2. The necessity of conformity 

of spectral characteristics of differential problem 

and numerical method, it is necessary for correct 

representation of infinitesimal disturbance 

development. 3. The necessity of calculations on 

enough big times of order of several the thermal 

diffusion times with enough big number of degrees 

of freedom.  

The mentioned troubles show that the important 

question is validation of numerical results. For 

validation of numerical results the linear analysis is 

necessary and nonlinear analysis is very desirable. 

The aim of this work is the linear and nonlinear (on 

model nonlinear system) analysis of spectral-finite 

difference method using by author for simulation of 

2-D turbulent convection with free boundary 

conditions and the numerical investigation of 

transition from soft toward hard turbulence. 

 

 

PROBLEM  FORMULATION 
 

Turbulent convective flow in a horizontal layer 

numerically is simulated at heating from below. The 

fluid is viscous and incompressible. The flow is 

time-dependent and two-dimensional. 

Boundaries of a layer are isothermal and free 

from shearing stresses. The model Boussinesq is 

used without semiempirical relationships. The 
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dimensionless set of equations given in terms of 

deviations from an equilibrium solution is [1,7]:  
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where φ is a stream function, ω is the vortex, Q is the 

temperature deviation from equilibrium profile (the 

total temperature being  T = 1 - y + Q), ∆f = fxx +fyy 

is the Laplace operator, Ra = gβН3
dQ/χν is the 

Rayleigh number, Pr = ν/χ is the Prandtl number, g is 

the gravitational acceleration, β, ν, χ are the 

coefficients of thermal expansion, kinematics 

viscosity and thermal conductivity, respectively, H is 

the layer height and dQ is the temperature difference 

on the horizontal boundaries. 

The required values ω, φ and Q are to be sought in 

the form: 
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where α = π/L is the wave number, and  

ρk = {0.5 (at k = 0, N) and 1 (at 1≤ k ≤ N-1)},  

0 ≤ k ≤ N, 1 ≤ m ≤ M-1, Skm = α2
k

2
 + π2

m
2
, here N 

and M are number of harmonics in x and y directions, 

respectively. 

High efficiency of spectral methods is coupled with 

representation of problem solution through aggregate 

of the eigenfunctions of the linear stability problem 

and if N and M are allowed to become infinite the 

representation is a complete orthogonal set. Also, 

such representation of the solution allows using the 

formulas of the linear stability theory; it significantly 

increases efficiency of numerical method. 

Solutions is periodic, but we consider this 

solution only in half of period in x – direction, 

therefore the periodic problem changes on the 

problem with boundary conditions on the side walls, 

according to form of solution. Thus, problem is 

solved in the region G = {(x, y)│0 ≤ x ≤ L, 0 ≤ y ≤1} 

with the boundary conditions φ = ω = Q = 0 for  

y = 0, 1; 0 ≤ x ≤ L (on the horizontal boundaries) and 

φx = ωx = Q = 0 with x = 0, L; 0 ≤ y ≤ 1 (on the 

vertical boundaries), L = π/α. 

 

 

NUMERICAL  METHOD 
 

We briefly describe our special spectral-difference 

numerical algorithm and testing [7]. Following a 

general ideology of the splitting method, transition 

from time layer n to time layer n+1 perform in two 

steps. 

On the first step, we take into account a linear 

progress of perturbations neglecting interaction 

between harmonics. 

Step 1. 

1
Q ,

2

, (3)

1 1
Q Q ,

2 Pr Pr

t x

t x

Raω ω

ϕ ω

ϕ

= ∆ +

∆ = −

= ∆ −

 

 

By substituting the solution representation (2) into 

system (3), we get the system of two ordinary 

differential equations for two unknown amplitudes 

ωkm and Qkm in spectral space, which is solved 

analytically without any approximations on the time. 

The analytical formulas were derived by program of 

analytical calculations Maple V Release 4, it is near 

to the formulas of linear stability theory. 

Step 2. 

1 1
( ) ,

Pr 2

, (4)

1 1 1
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Here we use a finite-difference scheme of 

alternating directions for solving the system 

equations of nonlinear convective transfer in 

physical space, earlier used for simulation of 

turbulent convection [8].  

For transition from spectral space into physical 

space and back, standard programs of FFT were 

used. The numerical method has the first order of 

time approximation and the second order of space 

approximation. 

The coefficients φx and φy  in (4) are defined: 

• On the value of stream function φ on n-th 

time layer (Scheme 1), 
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• On the value of stream function φ after first 

splitting step (Scheme 2), 

• On the value of arithmetic mean of stream 

function φ on n-th and n+1-th time layers  

(Scheme 3). The realization of Scheme 3 

demands introducing of iteration process.   

 

 

LINEAR  ANALYSIS 
 

Here we consider the linear analogs of differential 

problem (1) and numerical method. The solution (2) 

comprises only one harmonic and exponential 

depends from time, for instance  

( , , ) cos( ) sin( ),t
t x y e x my

λω α π−= Ω  

here Ω is const, harmonics is increasing if λ<0. By 

closeness λ for differential problem (λd) and 

numerical method (λsr) we may estimate the precision 

of numerical method. The correct representation of 

such solution provides the correct representation of 

infinitesimal disturbances of equilibrium solution 

(trivial for system (1)).   

Fig.1 represents the spectral characteristics for  

m = 1,2 and 3, Ra = 1000·Ra, Pr = 1, N = 64 and  

M = 16, the time step τ is equal to 4·10
-4

. Here solid 

line is differential problem, symbol ● – numerical 

method of present work and dash line – finite 

difference numerical method [8], curves 1,2 and 3 are 

first, second and third modes (m = 1,2 and 3), 

respectively. 

 

 
Figure 1 

Spectral characteristics 

 

Fig.2 represents the instability boundary in spectral 

space, here alpha and beta are wave numbers,  solid 

line is a boundary curve for differential problem  

(ρ = Ra
1/4φ1/2

 in polar coordinates), dash line - 

suggested spectral-finite difference method, dadot 

line – finite difference method [8], the parameter 

values are same as fig.1, but Ra = 10000·Racr now. 

 
Figure 2 

Instability boundary in spectral space 

 

We can see from fig.1 and fig.2 that suggested 

method has more precision than finite-difference 

and that both N and M must be proportional to Ra
1/4

 

at correct simulation. 

Fig.3 shows the spectral characteristics of other 

spectral methods for most instable mode m = 1, the 

parameter values are same as fig.1, but time step is 

equal to 1.6·10
-3

. Here black line represents the 

difference problem, symbol ● – suggested numerical 

method, red line – Orszag method (changed for  

2-D[9]), blue line – [10] and green line – [11]. 

 

 
Figure 3 

Comparison of spectral characteristics 

 

It may be seen in fig.3 that suggested spectral-finite 

difference method preserved the high accuracy at 

increasing of time step τ in forty times. 

We may derive the analytical formulas [7]: 
2 22

6 6 6 4 4 41 2( ) ,
96 24 24

sr d

H H
m m

τ
λ λ α π α π= + + − −  

 

where λd and λsr correspond to differential problem 

and suggested numerical method, τ, H1 and H2 are 

time step and space steps in x and y directions. 
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Unfortunately, the linear analysis doesn’t allow to 

investigate the time approximation of nonlinear 

terms. Only tools of nonlinear analysis may make it. 

 

 

NONLINEAR  ANALYSIS 
 

We perform the nonlinear analysis of our numerical 

method on model nonlinear system of equations: 
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This nonlinear system has a family of private 

waveform solutions: 
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Here A = 2αβ/S, S = α2
+β2

, C1 and C2 are arbitrary 

constants. 

The same solution has and suggested numerical 

method, thereafter these solutions may compare. In 

similar way, we investigated earlier finite difference 

numerical methods for nonlinear equation with 

oscillating viscosity and for simulation of 

viscoelastic flows [12]. 

Let the wave numbers α and β are small (long waves 

in x and y directions), let also the values of ρ and η 

on the n-th time layer are well know, we may derive 

after very cumbersome calculations with Maple 

program the expressions in form of power series for ρ 
and η on n+1-th time layer.  
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These formulas show that the amplitudes ρ and η 

calculate with same accuracy by Schemes 1-3 and 

that using of Schemes 1,2 lead to decreasing of 

calculation accuracy only in phase speed of solution. 

The test simulations showed that results of 

simulations are close for Schemes 1-3, therefore for 

DNS of turbulent convection using of Schemes 1,2 

is expedient because of iteration missing. 

 

 

SOFT AND HARD TURBULENCE 
 

We have simulated Rayleigh-Benard convection 

with α = 1, Pr = 10 and supercriticality r = Ra/Racr 

up to 34000.  

Fig.4 represents the Nusselt number versus 

supercriticality r at various resolutions and shows 

that resolution in 257*63 harmonics is sufficient for 

correct reproduction of flow development up to  

r = 34000.  

In our simulations we used 65*15  

(N = 64, M = 16) harmonics at r ≤ 1000, 129*31 

harmonics at 1000< r < 6000 and 257*63 harmonics 

at 6000 ≤ r. 

The calculated Nusselt numbers coincide with 

numerical result [10] at 5 ≤ r ≤ 40 with graphical 

accuracy, more detailed comparing is in [6].  

 

 
Figure 4 

Nusselt number at various resolutions 

 

The works of Chicago research group [13,14] show 

that at supercriticality r = Ra/Racr is equal to 
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approximately 7000 in experiments on turbulent 

Rayleigh-Benard (R-B) convection the transition 

toward new mode of turbulent convection take place. 

The modes of turbulence were named as soft 

turbulence (at r < 7000) and hard turbulence (at  

r > 7000). After transition to hard turbulence, the 

form of probability density for temperature 

pulsations in the centre of cell changes, the gaussian 

distribution replaces by exponential, the Nu–r  power 

law also was changed at transition. 

Fig.5 represents the probability density function for 

temperature pulsations in the centre of cell at  

r = 6000 (points), we may see that this distribution is 

gaussian. Here ∆c = 0.068 is the value of rms 

temperature pulsations in the middle between the 

plates. 
 

 
Figure 5 

Temperature probability density at r = 6000 

 

Fig.6 represents also the probability density function 

for temperature pulsations in the centre of cell 

(points), but at r = 10000, we may see that this 

distribution is exponential; here ∆c is equal to 0.067. 

Red line of fig.6 represents the result of 3-D 

numerical simulation in air at r = 9800 [2], green line 

- reestimated experimental result of Chicago group 

[13] and blue line - theoretical result [15]. We may 

see the differences only in neighborhood of mean 

value of temperature pulsations. 

If the distributions the same shown in fig.6 is fitted 

by exponential distribution: 

           ( ') exp( | ' | / ),
2

p T T c
c

α
α= − ∆

∆
 

then we obtain results shown on fig. 7, when we 

show α  versus supercriticality r, here black points 

and black solid line – present result of 2-D simulation 

with free boundary conditions, symbol ◊ - numerical 

result [2], symbol ● – numerical result [5], red and 

blue lines – experimental [13] and theoretical [15] 

results, respectively. 

 
Figure 6 

Temperature probability density at r = 10000 

 

 

 
Figure 7 

Alpha versus supercriticality 

 

Experimental result [13] was received for high 

values of supercriticality 1.2·10
5
 ≤ r ≤ 1.2·10

7
. 

Universality of probability density function 

(independence of α from the supercriticality) was 

denoted also in experimental work [14]. The result 

of present simulation also shows approximately 

universality at 1.6·10
4 ≤ r ≤ 3.2·10

4
 and close to both 

experimental and theoretical values. We note that in 

numerical simulations [5] (2-D, rigid, Pr = 7) and 

[4] (3-D, rigid, Pr = 0.7) all profiles of probability 

density have exponential form. 

Fig.8 represents the Nu–r power law at free 

boundary conditions. It is seen that at r ≈ 7000 the  

Nu–r power law was changed.  

 

 
Figure 7 

Nu-r power laws 
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CONCLUSION 
 

The suggested numerical method exactly reproduce 

the spectral characteristics of differential problem, it 

guarantees the correct reproduction of the 

infinitesimal disturbance development. It is kept at 

increasing of time step.  

On model nonlinear system the nonlinear analysis of 

suggested numerical method was also performed. It is 

shown that calculation of nonlinear transfer 

coefficients on value of stream function with n-th 

time layer (Scheme1) and on value of stream function 

after first step of splitting (Scheme2) leads to 

decreasing of calculation accuracy only in phase 

speed of solution without dropping of the common 

accuracy of simulation. For DNS of turbulent 

convection using of Schemes1,2 is expedient because 

of missing of iterations. 

For instance, we represent the simulation results of 

turbulent convection, it is shown that 2-D simulation 

with free (stress-free) boundary conditions reflects 

transition from soft toward hard turbulence. The 

gaussian distribution was replaced by exponential for 

temperature pulsations in center of cell, the 

characteristics of exponential distribution are close to 

both experimental and theoretical data  

at 16000 ≤ r ≤ 32000. The Nu – r  power law also 

was changed at transition. 
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