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Abstract 
In the work it is shown that the conservation laws for material media (the balance conservation laws for energy, linear momentum, angular momentum, and mass, that establish a balance between the variation of a physical quantity and the corresponding external action), turn out to be noncommutative. The noncommutativity of the conservation laws that leads to an emergence of internal forces and an appearance of the nonequilibrium is a cause of development of instability in  material media (material systems).   

     A mechanism of development of instability in gas dynamical systems is described and there are explained such processes as emergence of waves, vortices, turbulent pulsations and so on. 

      These results were obtained with the help of the mathematical apparatus of skew-symmetric differential forms.        

1. equations of the balance conservations law 

To study a development of instability it is necessary to analyze equations of the balance conservation laws. For example, we take the simplest gas dynamical system, namely, a flow of ideal (inviscid, heat nonconductive) gas [1].

Assume that gas is a thermodynamic system in the state of local equilibrium, that is, it is satisfied the relation [2] 
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 are entropy and internal energy per unit volume. 

    Let us introduce two frames of reference: an inertial one that is not connected with the material system and an accompanying frame of reference that is connected with the manifold formed by the trajectories of the material system elements. 

     In the inertial frame of reference the Euler equations are the balance conservation laws for energy, linear momentum and mass of ideal gas [1] can be written as  
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where 
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 is the total derivative with recpect to time. Here 
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  and are 
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 respectively the mass and the entalpy  densities of the gas.  

     Expressing entalpy in terms of internal energy 
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 with the help of formula 
[image: image12.wmf]r

/

p

e

h

+

=

  and using relation (1) the balance conservation law equation can be put to the form 
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And respectively, the equation of the balance conservation law for linear momentum can be presented as [1,3] 
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where 
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is the velocity of the gas particle, 
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 is the mass force. The operator 
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in this equation is defined only in the plane normal to the trajectory. [Here it was tolerated a certain incorrectness. Equations (3) and (4) are written in different forms. This is connected with difficulties when deriving these equations themselves. However, this incorrectness will not effect on results of the qualitative analysis of the evolutionary relation obtained from these equations.]
     Since the total derivative with respect to time is that along the trajectory, in the accompanying frame of reference equations (3) and (4) take the form: 
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where 
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 is the coordinate along the trajectory, 
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 is the left-hand side of equation (4), and 
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 is obtained from the right-hand side of relation (4). 

     {In the common case when gas is nonideal equation (3) can be written in the form 

                 
[image: image25.wmf]1

1

=

А

ξ

s

¶

¶





  (7) 

where 
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 is an expression that depends on the energetic actions. In the case of ideal gas 
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 and equation (7) transforms into (5). In the case of the viscous heat-conductive gas described by a set of the Navier-Stokes equations, in the inertial frame of reference the expression 
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can be written as [1] 
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Here 
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 is the heat flux, 
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 is the viscous stress tensor. In the case of reacting gas extra terms connected with the chemical nonequilibrium are added [1]. }
     Equations (5) and (6) can be convoluted into the relation 
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where    
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     The entropy enters into equation (9), as well as into the thermodynamic relation, it enters the entropy. However, in relation (1) for thermodynamic system the entropy depends on thermodynamic variables (see relation (1)), whereas in the evolutionary relation for gas dynamic system the entropy dependence on the space-time variables. 
2. the development of the gas dynamic instability 

Relation (9) is an evolutionary relation since this relation has been obtained from the evolutionary equations. It is just the equation that describes a state of material system and a mechanism of evolution of the gas dynamic instability (in the case of local thermodynamic equilibrium). 

     If relation (9) appears to be identical one (if the form 
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 be the closed form, and hence it is a differential), one can obtain a differential of entropy 
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 and find entropy as a function of space-time coordinates. {It should underline once again that entropy as a thermodynamic function of state is not gas dynamic function of state}. The availability of the gas dynamic function of state would point to the equilibrium state of the gas dynamic system.

     If relation (9) be not identical, then from this relation the differential of entropy 
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 cannot be defined. This will point to an absence of the gas dynamic function of state and nonequilibrium state of the system. Such nonequilibrium is a cause of the development of instability. 

     The evolutionary relation is a nonidentical one as it involves an unclosed differential form.  
     Let us consider the first-degree form 
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 are the components of the commutator of the form 
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. The components of the commutator of a form 
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can be written as follows:
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(here the term  connected with the nondifferentiability of the manifold has not yet been taken into account). The coefficients of the form 
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 have been obtained either from the equation of the balance conservation law for energy or from that for linear momentum. This means that in the first case the coefficients depend on the energetic action and in the second case they depend on the force action. In actual processes energetic and force actions have different nature and appear to be inconsistent. The commutator constructed from the derivatives of such coefficients is nonzero. This means that the differential of the form 
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 is nonzero as well. Thus, the form 
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 proves to be unclosed. This means that the evolutionary relation cannot be an identical one. In the left-hand side of this relation it stands a differential, whereas in the right-hand side it stands an unclosed form that is not a differential. 

      Since the evolutionary relation is not identical, from this relation one cannot get the state differential 
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 that may point to the equilibrium state of the material system. This means that the material system state is nonequilibrium. 

    To the nonequilibrium state it leads everything that makes a contribution into the commutator of the form 
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     From the analysis of coefficients of the form   
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  one can see that the development of instability is caused by not a simply connectedness of the flow domain, nonpotential  external (for each local domain of the gas dynamic system) forces, a nonstationarity of the flow, transport phenomena. {In common case on the gas dynamic instability it will effect the thermodynamic, chemical, oscillatory, rotational, translational nonequilibrium}.

     All these factors lead to emergence of internal forces, that is, to nonequilibrium and to development of various types of instability. 

    And yet for every type of instability one can find an appropriate term giving contribution into the evolutionary form commutator, which is responsible for this type of instability. Thus, there is an unambiguous connection between the type of instability and the terms that contribute into the evolutionary form commutator in the evolutionary relation. {In the general case one has to consider the evolutionary relations that correspond to the balance conservation laws for angular momentum and mass as well}. 
3. the transition from the nonequilibrium state  of  the system to the locally equilibrium state 
The locally equilibrium state corresponds the state differential that is a closed form. The transition from evolutionary differential form 
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 to closed form, that would correspond to the transition from the nonequilibrium state of the system to the locally equilibrium state, is possible only as the degenerate transform, i.e. the transform that does not conserve the differential.

    To the degenerate transform it must correspond a vanishing of some functional expressions. Such functional expressions may be Jacobians, determinants, the Poisson brackets, residues and others. It is obvious that the condition of degenerate transform has to be due to the gas dynamic system properties. This may be, for example, the availability of any degrees of freedom in the gas dynamic system. 

    If the transform is degenerate, from the unclosed evolutionary form it can be obtained a differential form closed on some structure (pseudostructure) that is a differential. On the pseudostructure evolutionary relation (9) transforms into the identical relation. 

The identical relation obtained from the nonidentical evolutionary relation under degenerate transform integrates the state differential and the closed (inexact) exterior differential form. 

  The availability of the state differential indicates that the material system state becomes a locally equilibrium state. The availability of the exterior closed on the pseudostructure differential form means that the physical structure is present. 

   This shows that the transition of material system into the locally equilibrium state is accompanied by the origination of physical structures. 

   The gas dynamic formations that correspond to these physical structures are waves, vortex, shock waves, turbulent pulsations and so on. 

   Characteristics of the formation (intensity, vorticity, absolute and relative speeds of propagation of the formation) are determined by the evolutionary form and its commutator, by closed forms obtained  and by the material system characteristics
    Let as analyze which types of instability and what gas dynamic  formation can originate under given external action.

1). Shock, break of diaphragm and others. The instability originates Because of nonstationarity. The last term in equation (4) gives a contribution into the commutator. In the case of ideal gas whose flow is described by equations of the hyperbolic type the transition to the locally equilibrium state is possible on the characteristics and their envelopes. The corresponding structures are weak shocks and shock waves. 

2). Flow of ideal gas around bodies. The instability develops because of the multiple connectedness of the flow domain and a nonpotentiality of the body forces. The contribution into the commutator comes from the second and third terms of the right-hand side of equation (4). Since the gas is ideal one and 
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, that is, there is no contribution into the each fluid particle, an instability of convective type develops. For  
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  (
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 is the velocity of the gas particle, 
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 is the speed of sound) a set of equations of the balance conservation laws belongs to the hyperbolic type and hence the transition to the locally equilibrium state is possible on the characteristics and on the envelopes of characteristics as well, and weak shocks and shock waves are the structures of the system. If  
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 when the equations are of elliptic type, such a transition is possible only at singular points. The structures emerged due to a convection are of the vortex type. Under long acting the large-scale structures can be produced.

3). Boundary layer. Contributions into the commutator produce the second term in the right-hand side of equation (4) and the second and third terms in expression (8). The transition to the locally equilibrium state is allowed at singular points. Because in this case 
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, that is, the external exposure acts onto the gas particle separately, the development of instability and the transitions to the locally equilibrium state are allowed only in an individual fluid particle. Hence, the structures emerged behave as pulsations. These are the turbulent pulsations. 
   Studying the instability on the basis of the analysis of entropy behavior was carried out in the works by Prigogine and co-authors [4]. In that works entropy was considered as the thermodynamic function of state (though its behavior along the trajectory was analyzed). By means of such state function one can trace the development (in gas fluxes) of the hydrodynamic instability only. To investigate the gas dynamic instability it is necessary to consider entropy as the gas dynamic state function, i.e. as a function of the space-time coordinates. Whereas for studying the thermodynamic instability one has to analyze the commutator constructed by the mixed derivatives of entropy with respect to the thermodynamic variables, for studying the gas dynamic instability it is necessary to analyze the commutators constructed by the mixed derivatives of entropy with respect to the space-time coordinates. 
    It is commonly believed that the instability is an emergence of any structures in the gas dynamic flow. From this viewpoint the laminar boundary layer is regarded as stable one, whereas the turbulent layer regarded as unstable layer. However the laminar boundary layer cannot be regarded as a stable one because of the fact that due to the not simple connectedness of the flow domain and the transport processes the instability already develops although any structures do not originate. In the turbulent boundary layer the emergence of pulsations is the transition to the locally equilibrium state, and the pulsations themselves are local formations. The other matter, due to the global nonequilibrium the locally equilibrium state is broken up and the pulsations weaken. 
      In conclusion it should be said a little about modelling instable flows. As it is known, some authors tried to account for the development of instability by means of improving the equations modelling the balance conservation laws (for example, by introducing the high-order moments) or by introducing additional equations. However, such attempts give no satisfactory results. To describe the nonequilibrium flow and the emergence of the gas dynamic structures (waves, vortices, turbulent pulsations) one must add the evolutionary relation obtained from the balance conservation law equations to the balance conservation law equations.  Under numerical modeling the gas flows one has to trace for the transition from the evolutionary nonidentical relation to the identical relation (for the transition from an evolutionary unclosed form to an exterior closed form), and this will point to the emergence of a certain physical structure. 
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